黎家,男,博士,教授。現任廣州大學生命科學學院院長, 長江學者獎勵計劃特聘教授,蘭州大學萃英特聘教授、博士生導師。曾任蘭州大學生命科學學院院長。
榮譽和社會工作:黎家教授是教育部“長江學者”特聘教授。曾獲2013-2014年度美國弗吉尼亞理工大學農學與生命科學學院杰出校友獎。后又被評為“甘肅省優秀專家”,“甘肅省領軍人才第一層次專家”等。黎家教授擔任:中國植物生理學會常務理事、植物激素專業委員會主任;《Food and Energy Security》創刊副主編(Wiley-Blackwell出版社);《Journal of Integrative Plant Biology》、《Journal of Genetics and Genomics》、《植物學報》、《遺傳》編委以及20多種國際主要學術刊物審稿人;國家自然科學基金委員會生命科學部專家評審組成員;科技部、教育部及基金委各類人才計劃終評組專家;教育部重點實驗室評審專家,國家重點實驗室評估專家組成員;蘭州大學學術委員會委員、“細胞活動與逆境適應”教育部重點實驗室主任、自然科學分委會副主任;多個國家重點實驗室、教育部重點實驗室及其他學術機構學術委員會委員等。
學術成果和影響力:黎家教授長期從事植物激素油菜素甾醇(Brassinosteroid, BR)領域的研究,在闡明其生物合成、代謝調控及信號轉導的分子機理方面做了許多原創性工作。例如,黎家教授率先采用激活標簽技術篩選鑒定到BR共受體激酶BAK1,后又發現BAK1同時但獨立參與BR感知、植物免疫等多條信號通路并闡明了分子機理。這些成果是相關研究領域的經典之作,被國內外同行廣泛關注,BAK1也早已成為了國際植物學界的明星分子。
近年來,黎家教授拓展了新的研究領域,開始關注受體激酶調控的植物根系可塑性發育過程。發現多個受體激酶在根分生組織的發育、側根的發生中起關鍵作用,并在植物根的向水性生長機制研究方面取得了突破性進展。根的向水性生長現象早在250年前就有報道,但這一過程的分子機理至今仍知之甚少。黎家教授團隊研究發現,根的向水性生長與向地性生長不同,不是由生長素的不對稱分布造成的,而是由細胞分裂素的不對稱分布造成的,預計下一步會有更多創新性的成果發表。對根的向水性生長機制的解析有利于人們設計出嶄新的分子育種策略來有效地提高農作物的抗旱能力。
黎家教授的成果發表在《Cell》、《Developmental Cell》、《Current Biology》、《Cell Research》、《Nature Plants》、《Proc. Natl. Acad. Sci. USA》、《Plant Cell》、《Nature Communications》、《Molecular Plant》、《Plant Physiology》、《Plant Journal》、《Current Opinion in Plant Biology》、《PLoS Genetics》等多種知名國際學術期刊上。
教育經歷:
1995 美國弗吉尼亞理工大學 博士 (Ph.D. Virginia Tech, 1995)
1989 中國科學院植物研究所 碩士 (M.S. Institute of Botany, CAS, 1989)
1984 蘭州大學生物系 學士 (B.S. Lanzhou University, 1984 )
工作經歷:
1984-1986年,在湖南師范大學生物系教師,助教。
1990-1991年在中科院植物研究所任助理研究員。
1997-2002年在美國密蘇里大學哥倫比亞分校從事博士后研究。
2001年至2002年美國密蘇里大學哥倫比亞分校研究助理教授。
2002年8月起在美國俄克拉荷馬大學植物與微生物系任助理教授,
2008年至2009年美國俄克拉荷馬大學副教授(獲終身教職)。
2009年至今教育部“長江學者獎勵計劃”特聘教授(植物學)。
2009年至2021年,蘭州大學萃英特聘教授、生命科學學院院長。
2021年至今廣州大學生命科學學院院長。
2002年8月起在美國俄克拉荷馬大學植物與微生物系任助理教授,2008年5月晉升為副教授,獲終身教職(tenured)。通過全球競聘獲任蘭州大學生命科學學院院長,于2009年3月全職回國工作。長江學者特聘教授。獲2013-2014年度美國弗吉尼亞理工大學農學與生命科學學院杰出校友獎。
社會任職:
1、中國植物生理學會常務理事,植物激素專業委員會主任。
2、中國植物學會細胞生物學專業委員會副主任。
3、中國細胞生物學會理事。
4、Food and Energy Security 創刊副主編。
5、JIPB、JGG、Plant Signaling and Behavior、遺傳、植物學報、植物生理學報編委。
6、“細胞活動與逆境適應”教育部重點實驗室首任主任。
7、“植物細胞信號轉導”111引智基地負責人。
8、蘭州大學校學術委員會委員,學風委員會委員,自然科學委員會副主任。
9、植物基因組學國家重點實驗室學術委員會委員。
主講課程:
給研究生講授“Plant Hormones”(全英文講授)。 給本科生講授生命科學導讀、部分植物生理學課程。
培養研究生情況:
目前指導3名博士后,15名博士研究生、12名碩士研究生。
本課題組每年都有一定名額對外公開招收植物學及細胞生物學方向碩士及博士研究生,歡迎廣大優秀學子積極與我聯系(lijia@lzu.edu.cn)并報考或保送做我的學生。也熱忱歡迎各位有志于植物細胞信號轉導研究的年輕學者作為博士后加盟本團隊。
研究方向:
1、油菜素內酯的信號傳遞、合成、及代謝途徑的分子調控機制 (Brassinosteroid Signal Transduction and Homeostasis):
油菜素內酯是一類重要的植物激素,參與調控植物生長的各個階段,阻斷油菜素內酯的生物合成或信號轉導都會使植物變得極其矮小,并表現出雄性不育、推遲衰老、在黑暗培養時呈現出去黃化等的異常表型。油菜素內酯的受體是一個跨膜的亮氨酸富集型受體激酶,它的胞外特定結構域能特意與油菜素內酯相互作用從而啟動胞內一系列磷酸化、脫磷酸化反應,把信號一步步傳到細胞核中,最終改變基因的表達。在過去的近二十年中,本研究小組利用激活標簽遺傳學手段成功地分離到多個關鍵蛋白 ( 比如: BRS1 , BAK1 , AtSERK1 , BRL1 , BRL3 , BEN1 等 ) ,研究表明它們在油菜素內酯的信號轉導、合成、及代謝調控中起重要作用。利用經典遺傳學及生物化學手段,本實驗室證明了BAK1在油菜素內酯信號早期階段起必不可少的作用。現階段的工作集中在利用遺傳、生化、蛋白組學等方法繼續發現參與油菜素內酯信號轉導、合成、及代謝調控的新蛋白,并對以往實驗室已發現蛋白所參與的具體作用機制作深入細致的探索。在工作中我們也難免會涉及到其他植物激素在調控植物的生長發育及逆境適應方面的功能,如生長素、細胞分裂素及多肽激素等。
2 、擬南芥類受體蛋白激酶的生物學功能 (Functional Analyses of LRR-RLKs):
細胞與細胞,細胞與環境之間的信號轉導是高等植物生長發育的細胞生物學基礎,位于細胞表面的受體激酶在信號轉導過程中起至關重要的作用,它們通常作為信號轉導的原初受體,接受位于細胞間隙的小分子化合物(即所謂的信號分子),信號分子可以來自于周圍的植物細胞或環境中的微生物等。過去的近二十年時間里本實驗室做了大量的前期工作,克隆了擬南芥基因組中全部223個編碼亮氨酸富集型受體蛋白激酶的大多數全長 cDNA(Gou et al., 2010, BMC Genomics),克隆并建立了全部223個LRR-RLK的promoter-GUS轉基因植株 (Wu et al., 2016, Molecular Plant),對它們在不同發育階段的組織水平的轉錄表達進行了詳細的研究,對進一步了解它們真正的生物學功能奠定了良好的基礎。目前本實驗室正在利用各種遺傳學、分子生物學及組學手段對223個LRR-RLKs中尚未揭示功能的分子開展生物學功能研究,已有多個尚未研究過的LRR-RLKs的功能被鑒定到。
3 、根生物學 (Root Biology):
對223個LRR-RLKs表達圖譜的分析發現大多數LRR-RLKs在根中表達,表達模式也不盡相同,說明它們在調控根的發育及環境適應中起重要作用。近年來,實驗室圍繞LRR-RLKs如何調控植物根的發育及環境介導的可塑性生長方面做了一些工作,有了一些意想不到的發現。比如,發現一組LRR-RLKs, RGIs,能作為RGF1的受體參與根尖stem cell niche的維持;另外,發現兩個受體激酶MUS及MUL在調控側根發育的早期起重要作用;發現有一個受體激酶參與根的向水性生長,并由此發現根尖細胞分裂素的不對稱分布是根向水性生長的決定因素。更多的工作還在進行中。
承擔科研項目情況:
1、國家基金委重大研究計劃重點項目“TCP類轉錄因子在調控油菜素內酯生物合成及信號轉導中的作用機理”, 90917019,2010.1.1到2013.12.31, 課題負責人:黎家;
2、國家基金委重大研究計劃集成項目“油菜素內酯生物合成調控的分子機理”,91117008, 2012.1.1到2013.12.31,課題負責人: 黎家;
3、科技部國家基礎研究發展計劃“高等植物蛋白質修飾與降解調控的分子機理研究”項目(項目負責人:謝旗)中的課題之一“植物蛋白的修飾的重要過程與調控機理”,2011CB915401,2011.1.1到2015.12.31, 課題負責人:黎家;
4、國家基金委重大研究計劃集成項目“BAK1調控油菜素內酯信號轉導及器官發育的分子機制”,91317311,2014.1.1到2015.12.31,課題負責人: 黎家;
5、國家基金委面上項目“兩組類受體激酶調控擬南芥根生長發育的分子機理“, 31470380,2015.1.1到2018.12.31;
6、國家基金委重點項目 “植物類受體激酶調控根向水性反應的分子機理“,31530005,2016.1.1到2020.12.31,課題負責人:黎家;
7、重點國際合作項目“受體激酶RLK68及RLK165調控擬南芥側根發生的分子機制”,31720103902, 2017.1.1到2021.12.31, 課題負責人:黎家;
8、國家基金委重點項目 “細胞分離素調控植物向水性生長的分子機制”, 32030005,2021.1.1-2025.12.31,課題負責人:黎家。
發明專利:
[1]種康, 李丹, 黎家, 許智宏. 一種培育葉夾角改變的轉基因水稻的方法及其專用重組載體[P]. 北京市: CN101659965B, 2011-11-16.
[2]種康, 李丹, 黎家, 許智宏. 一種培育葉夾角改變的轉基因水稻的方法及其專用重組載體[P]. 北京: CN101659965, 2010-03-03.
[3]種康, 徐云遠, 黎家, 王孝民, 約翰·C·沃克, 許智宏, 譚克輝. 一種控制植物花芽著生位置的方法及應用[P]. 北京市: CN1231582C, 2005-12-14.
[4]種康, 徐云遠, 黎家, 王孝民. 一種控制植物花芽著生位置的方法及應用[P]. 北京: CN1483819, 2004-03-24.
發表中英文學術論文100余篇。
發表英文論文:
Publications (* Corresponding author):
[106]Wei, Z., Zhang, H., Fang, M., Lin, S., Zhu, M., Li, Y., Jiang, L., Cui, T., Cui, Y., Kui, H., Peng, L., Gou, X., Li, J.* (2023) The Dof transcription factor COG1 is a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Molecular Plant, DOI: https://doi.org/10.1016/j.molp.2023.09.011.
[105]Zhang, J., Chen, W., Li, X., Shi, H., Lv, M., He, L., Bai, W., Cheng, S., Chu, J., He, J., Gou, X., and Li, J.* (2023) Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. Plant Physiology kiad399 doi: 10.1093/plphys/kiad399.
[104]Chen, C., He, G., Li, J., Perez-Hormaeche, J., Becker, T., Luo, M., Wallrad, L., Gao, J., Li, J., Pardo, J.M., Kudla, J.*, and Guo Y.* (2023) A salt stress-activated GSO1-SOS2-SOS1 module protects the Arabidopsis root stem cell niche by enhancing sodium ion extrusion. EMBO Journal 42(13), e113004.
[103]Liu, B., Feng, C., Fang, X., Ma, Z., Xiao, C., Zhang, S., Liu, Z., Sun, D., Shi, H., Ding, X., [103]Qiu, C., Li, J., Luan, S., Li, L., and He, K.* (2023) The anion Channel SLAH3 interacts with potassium channels to regulate nitrogen-potassium homeostasis and membrane potential in Arabidopsis. Plant Cell 35(4), 1259-1280.
[102]Wang, J., Wang, G., Liu, W., Yang, H., Wang, C., Chen, W., Zhang, X., Tian, J., Yu, Y., Li, J., Xue, Y., Kong, Z.* (2023) Brassinosteroid signals cooperate with katanin-mediated microtubule severing to control stamen filament elongation. EMBO Journal 42(4), e111883.
[101]Li, M., Lv, M., Wang, X., Cai, Z., Yao, H., Zhang, D., Li, H., Zhu, M., Du, W., Wang, R., Wang, Z., Kui, H., Hou, S., Li, J., Yi, J., Gou, X.* (2023) The EPFL-Erf-SERK signaling controls integument development in Arabidopsis. New Phytologist 238(1), 186-201.
[100]Zhu, M., Tao, L., Zhang, J., Liu, R., Tian, H., Hu, C., Zhu, Y., Li, M., Wei, Z., Yi, J., Li, J., Gou, X.* (2022) The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. Plant Cell 34(12), 4714-4737.
[99]Shi, H., Li, X., Lv, M., Li, J.* (2022) BES1/BZR1 family transcription factors regulate plan development via brassinosteroid dependent and independent pathways. International Journal of Molecular Sciences 23(17), 10149.
[98]Li, X., Zhang, J., Shi, H., Li, B., and Li, J.* (2022) Rapid responses: Receptor-like kinases directly regulate the functions of membrane transport proteins in plants. Journal of Integrative Plant Biology 64(7), 1303-1309.
[97]Li, M., Liu, C., Hepworth, S.R., Ma, C., Li, H., Li, J., Wang, S-M, and Yin, H.* (2022) SAUR15 interaction with BRI1 activates plasma membrane H+-ATPase to promote organ development of Arabidopsis. Plant Physiology 189(4), 2454-2466.
[96]Wang, Y., Chen, W., Ou, Y., Zhu, Y., and Li, J.* (2022) Arabidopsis ROOT ELONGATION RECEPTOR KINASE negatively regulate root growth putatively via altering cell wall remodeling gene expression. Journal of Integrative Plant Biology 64(8), 1502-1513.
[95]Cao, J., Liang, Y., Yan, T., Wang, X., Zhou, H., Chen, C., Zhang, Y., Zhang, B., Zhang, S., Liao, J., Cheng, S., Chu, J., Huang, X., Xu, D., Li, J., Deng, X.W., Lin, F.* (2022) The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. Plant Cell 34(6), 2266-2285.
[94]Ou, Y., Tao, B., Wu, Y., Cai, Z., Li, H., Li, M., He, K., Gou, X., Li, J.* (2022) Essential roles of SERKs in the ROOT MERISTEM GROWTH FACTOR-mediated signaling pathway. Plant Physiology 189(1), 165-177.
[93]Wang, W., Hu, C., Li, X., Zhu, Y., Tao, L., Cui, Y., Deng, D., Fan, X., Zhang, H., Li, J., Gou, X.*, Yi, J.* (2022) Receptor-like cytoplasmic kinases PBL34/35/36 are required for CLE peptide-mediated signaling to maintain SAM and RAM homeostasis in Arabidopsis. Plant Cell 34(4), 1289-1307.
[92]Fang, Y., Chang, J., Shi, T., Luo, W., Ou, Y., Wan, D.*, Li, J.* (2021) Evolution of RGF/GLV/CLEL peptide hormones and their roles in land plant growth and regulation. International Journal of Molecular Sciences 22(24), 13372.
[91]Hu, C., Zhu, Y., Cui, Y., Zeng, L., Li, S., Meng, F., Huang, S., Wang, W., Kui, H., Yi, J., Li, J., Wan, D., Gou, X.* (2021) A CLE-BAM-CIK signaling module controls root protophloem differentiation in Arabidopsis. New Phytologist 233(1), 228-296.
[90]Zhang, H., Li, X., Wang, W., Li, H., Cui, Y., Zhu, Y., Kui, H., Yi, J., Li, J., Gou, X.* (2021) SERKs regulate embryoic cuticle integrity through the TWS-GSO1/2 singlaing pathway in Arabidopsis. New Phytologist 233(1), 313-328.
[89]Chang, J., Li, J.* (2022) Methods to Quantify Cell Division and Hormone Gradients During Root Tropisms. In: Blancaflor E.B. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 2368. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1677-2_5
[88]Feng, Z., Shi, H., Lv, M., Ma, Y., Li, J.* (2021) Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in Arabidopsis thaliana. Journal of Integrative Plant Biology 63 (7), 1353-1366.
[87]Sun, D., Fang, X., Xiao, C., Ma, Z., Huang, X., Su, J., Li, J., Wang, J., Wang, S., Luan, S., He, K.* (2021) Kinase SnRK1.1 regulates nitrate channel SLAH3 engaged in nitrate-dependent alleviation of ammonium toxicity. Plant Physiology 186 (1), 731-749.
[86]Fang, X., Liu, B., Shao, Q., Huang, X., Li, J., Lun, S.*, and He, K.* (2021) AtPiezo plays an important role in root cap mechanotrasdiction. International Journal of Molecular Sciences 22, 467.
[85]Ou, Y., Kui, H., Li, J.* (2020) Receptor-like kinases in root development: current progress and future directions. Molecular Plant 14, 166-185.
[84]Chen, L., Zhao, M., Wu, Z., Chen, S., Rojo, E., Luo, J., Li, P., Zhao, L., Chen, Y., Deng, J., Cheng, B., He, K., Gou, X., Li, J., Hou, S.* (2020) RNA polymerase II associated proteins regulate stomatal development through directly interacting with the stomatal transcription factors in Arabidopsis thaliana. New Phytologist 230, 171-189.
[83]Wu, Y., Gao, Y., Zhan, Y., Kui, H., Liu, H., Yan, L., Kemmerling, B., Zhou, J-M., He, K.*, Li, J.* (2020) Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death. Proc. Natl. Acad. Sci. USA 117(43), 27044-27053.
[82]Wei, Z. and Li, J.* (2020) Regulation of Brassinosteroid homeostasis in higher plants. Frontiers in Plant Science 11, 583622.
[81]Lu, X., Shi, H., Ou, Y., Cui, Y., Chang, J., Peng, L., Gou, X., He, K., Li, J.* (2020) RGF1-RGI1, a peptide-receptor complex, regulates Arabidopsis root meristem development via a MPAK signaling cascade. Molecular Plant 13, 1594-1607.
[80]Yin, H., Li, M., Lv, M., Hepworth, S.R., Li, D., Ma, C., Li, J.*, Wang, S.* (2020) SAUR15 promotes lateral and adventitious roo development via activating H+-ATPase and auxin biosynthesis. Plant Physiology 184(2), 837-851.
[79]Liu, J., Li, J., Shan, L.* (2020) SERKs. Current Biology 30(7), R293-R294.
[78]Lv, M. and Li, J.* (2020) Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. International Journal of Molecular Sciences 21, 2737; doi:10.3390/ijms21082737
[77]Xun, Q., Wu, Y., Li, H., Chang, J., Ou, Y., He, K., Gou, X., Tax, F. E., Li, J.* (2020) Two receptor-like protein kinases, MUSTACHES and MUSTACHES-LIKE, regulate lateral root development in Arabidopsis thaliana, New Phytologist 227, 1157-1173.
[76]Gou, X. and Li, J.* (2020) Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant Physiology 182(4), 1667-1681.
[75]Li, J., Li, C. (2019) Seventy-year major research progress in plant hormones by Chinese scholars (in Chinese). Sci Sin Vitae 49, 1227-1281.
[74]Chang, J., Li, X., Fu, W., Wang, J., Yong, Y., Shi, H., Ding, Z., Kui, H., Gou, X., He, K., Li, J.* (2019) Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Research 29(12), 984-993.
[73]Chen, W., Lv, M., Wang, Y., Wang, P., Cui, Y., Li., M., Wang, R., Gou, X., Li., J.* (2019) BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling pathway to control tapetum development in Arabidopsis thaliana. Nature Communications 10, 4164.
[72]Zhou, Y., Xun, Q., Zhang, D., Lv, M., Ou, Y., and Li, J.* (2019) TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15, 600-610.
[71]Li, H., Cai, Z., Wang, X., Li, M., Cui, Y., Cui, N., Yang, F., Zhu, M., Zhao, J., Du, W., He, K., Yi, J., Tax, F.E., Hou, S., Li, J., Gou, X.* (2019) SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Molecular Plant 12(7), 984-1002.
[70]Wu, Z.L., Chen, L., Yu, Q., Zhou, W.Q., Gou, X.P., Li, J., Hou, S.W.* (2019) Multiple transcriptional factors control stomata development in rice. New Phytologist 223(1), 220-232.
[69]Lv, M., Li, M., Chen, W., Wang, Y., Sun, C., Yin, H., He, K., and Li, J.* (2018) Thermal-enhanced bri1-301 instability reveals a plasma membrane protein quality control system in plants. Frontiers in Plant Science 9, 1620.
[68]Cui, Y., Hu, C., Zhu, Y., Cheng, K., Li, X., Wei, Z., Xue, L., Lin, F., Shi, H., Yi, J., Hou, S., He, K., Li, J., Gou, X.* (2018) CIK Receptor kinases determine cell fate specification during early anther development in Arabidopsis. Plant Cell 30, 2383-2401.
[67]Li, J. * (2018) Cell Signaling leads the way. Journal of Integrative Plant Biology 60, 743-744.
[66]Wei, Z. and Li, J.* (2018) Receptor-like protein kinases: key regulators controlling root hair development in Arabidopsis thaliana. Journal of Integrative Plant Biology 60, 841-850.
[65]Hu, C., Zhu, Y., Cui, Y., Cheng, K., Liang, W., Wei, Z., Zhu, M., Yin, H., Zeng, Li, Xiao, Y., Lv, M., Yi, J., Hou, S., He, K., Li, J., Gou, X.* (2018). A group of receptor kinases are essential for CLAVATA signaling to maintain stem cell homeostasis. Nature Plants 4, 205-211.
[64]An, Z., Liu, Y., Ou, Y., Li, J., Zhang, B., Sun, D., Sun, Y., Tang, W.* (2018) Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc. Natl. Acad. Sci. USA 115(5), 1123-1128.
[63]Zhou, Y., Zhang, D., An, J., Yin, H., Fang, S., Chu, J., Zhao, Y., and Li, J.* (2018) TCP transcription factors regulate shade avoidance syndrome via directly mediating the expression of both PHYTOCHROME INTERACTING FACTORs and auxin biosynthetic genes. Plant Physiology 176(2), 1850-1861.
[62]Cheng, X., Gou X., Yin, H., Mysore, K.S., Li, J.*, and Wen, J.* (2017) Functional characterization of brassinosteroid receptor MtBRI1 in Medicago truncatula. Scientific Reports 7: 9327.
[61]Ou, Y., and Li, J.* (2017) Three divergent approaches identified the same RGF1 receptors in Arabidopsis thaliana. Sci China Life Sci 60, 1040-1043.
[60]Sun, C., Yan, K., Han, J-T., Tao, L., Lv, M-H., Shi, T., He, Y-X., Wierzba, M., Tax, F.E., Li, J.* (2017) Scanning for new BRI1 receptor mutations via TILLING analysis. Plant Physiology 174, 1881-1896.
[59]Wei, Z., Yuan,T., Tarkowská,D., Kim,J., Nam,H.G.,Novák,O., He, K., Gou, X. and Li, J.* (2017) Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4 and PIF5. Plant Physiology 174, 1260-1273.
[58]Gao, Y., Wu, Y., Du, J., Zhan, Y., Sun, D., Zhao, J., Zhang, S., Li, J. and He, K.* (2017) Both light-induced SA accumulation and ETI mediators contribute to the cell death regulated by BAK1 and BKK1. Frontiers in Plant Science 8, 622.
[57]Chang, J.K., Li, J.* (2017) Plants use an atypical strategy to perceive strigolactones. Chin Bull Bot 52, 123−127.
[56]Sun, C., Li, J.* (2017) Biosynthesis, catabolism, and signal transduction of brassinosteroids. Plant Physiology Journal 53, 291-307.
[55]Wang, H., Wei, Z., Li, J., Wang, X. (2017) Brassinosteroids. In: Li, J., Li., C., and Smith, S.M. (eds) Hormone Metabolism and Signaling in Plants. Woodhead Publishing, Elsevier
[54]Wei, Z., Gou, X., Li, J.* (2016) Brassinosteroids. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI:10.1002/9780470015902.a0020092.pub2
[53]Ou, Y., Lu, X., Zi, Q., Xun, Q., Zhang J., Wu, Y., Shi, H., Wei, Z., Zhao, B., Zhang, X., He, K., Gou, X., Li, C., Li, J.* (2016) RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Research, 26(6), 686-698.
[52]Chen, L., Guan, L., Qian, P., Xu, F., Wu, Z., Wu, Y., He, K., Gou, X., Li, J., and Hou, S.* (2016) NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis. Development 143, 1600-1611.
[51]Du, J., Gao, Y., Zan, Y., Zhang, S., Wu, Y., Xiao, Y., Zou, B., He, K., Gou, X., Li, G., Lin, H., Li, J.* (2016) Nucleocytoplasmic trafficking is essential for BAK1 and BKK1-mediated cell-death control. Plant Journal 85(4), 520-531.
[50]Zhang, J., Yuan, T., Duan, X., Wei, X., Shi, T., Li, J., Russell, S.D.*, Gou, X.* (2016) Cis-regulatory elements determine germline specificity and expression level of an isopentenyltransferase gene in sperm cells of Arabidopsis. Plant Physiology 170(3), 1524-1534.
[49]Yue, J., Qin, Q., Meng, S., Jin, H., Gou, X., Li, J., Hou, S.* (2016) TOPP4 regulates the stability of phytochrome interacting factor 5 during photomorphogenesis in Arabidopsis. Plant Physiology 170(3), 1381-1397.
[48]Zhao, B., Lv, M., Feng, Z., Campbell, T., Liscum, E., Li, J.* (2016) TWISTED DWARF 1 associates with BRASSINOSTEROID INSENSITIVE 1 to regulate early events of the brassinosteroid signaling pathway. Molecular Plant 9(4), 582-592.
[47]Wu, Y., Xun, Q., Guo, Y., Zhang, J., Cheng, K., Shi, T., He, K., Hou, S., Gou, X., Li, J.* (2016) Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. Molecular Plant 9(2), 289-300.
[46]Wei, Z. and Li, J.* (2016) Brassinosteroid regulates root growth, development, and symbiosis. Molecular Plant 9(1), 86-100.
[45]Wu, W., Wu Y., Gao, Y., Li, M., Yin, H., Lv, M., Zhao, J., Li, J., He, K.* (2015) Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Frontiers in Plant Science 6, 852.
[44]Shi, T., Dimitrov, I., Zhang, Y., Tax, F.E., Yi, J., Gou, X., Li, J.* (2015) Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestification. Plant Molecular Biology 89(3), 253-261.
[43]Gao, Y., Zhang, D., and Li, J.* (2015) TCP1 moduates DWF4 expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana. Journal of Genetics & Genomics 42(7), 383-392.
[42]Guo, X., Qin, Q., Yan, J., Niu, Y., Huang, B., Guan, L., Li, Y., Ren, D.,Li, J., Hou, S.* (2015) TYPE-ONE PROTEIN PHOSPHATASE 4 regulates pavement cell interdigitation by modulating PIN-FORMED 1 polarity and trafficking in Arabidopsis. Plant Physiology 167 (3), 1058-1075.
[41]Qin, Q., Wang, W., Guo, X., Yue, J., Huang, Y., Xu, X., Li, J., Hou, S.* (2014) Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase, TOPP4. PLoS Genetics 10(7):e1004464.
[40]Yang, Z.R., Zhang, C.J., Yang, X.J., Kun, L.,Wu, Z.X., Zhang, X.Y., Zheng, W.,Xun, Q.Q., Liu, C.L., Lu, L.L., Yang, Z.E., Qian, Y.Y., Xu, Z.Z.,Li, C.F., Li,J.*, Li, F.G.* (2014) PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist 203, 437-448.
[39]Qin, Z.X., Zhang, X.R., Zhang, X., Xin, W., Li, J., Hu, Y.X.* (2014) The Arabidopsis transcription factor IIB-related protein BRP4is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. Journal of Experimental Botany 65(9),2521-2531.
[38]He, K., Xu, S., Li, J.* (2013) BAK1 Directly Regulates Brassinosteroid Perception and BRI1 Activation. Journal of Integrative Plant Biology 55(12),1264-1270.
[37]Li, J.*, Tax, F.E. (2013) Receptor-Like Kinases: Key Regulators of Plant Development and Defense. Journal of Integrative Plant Biology 55(12),1184-1187.
[36]Ma, T., Wang, J., Zhou, G., Yue, Z., Hu, Q., Chen, Y., Liu, B., Qiu, Q., Wang, Z., Zhang, J., Wang, K., Jiang, D., Gou, C., Yu, L., Zhan, D., Zhou, R.., Luo, W., Ma, H., Yang, Y., Pan, S., Fang, D., Luo, Y., Wang, X., Wang, G., Wang, J., Wang, Q., Lu, X., Chen, Z., Liu, J., Lu, Y., Yin, Y., Yang, H., Abbott, R.J., Wu, Y., Wan, D., Li, J., Yin, T., Lascoux, M., Difazio, S.P., Tuskan, G.A., Wang, J., Liu, J.* (2013) Genomic insights into salt adaptation in a desert poplar. Nature Communications 4, 2797.
[35]Qian, P., Han, B., Forestier, E., Hu, Z., Gao, N., Lu, W., Schaller, H., Li, J., Hou, S.* (2013) Sterols are required for cell fate commitment and maintenance of the stomatal lineage in Arabidopsis. The Plant Journal 74, 1029-1044.
[34]Zhao, B. and Li, J.* (2012) Regulation of Brassinosteroid Biosynthesis and Inactivation. Journal of Integrative Plant Biology 54 (10), 746-759.
[33]Wen, J.*, Li, J., and Walker, J.C. (2012) Overexpression of a Serine Carboxypeptidase Increases Carpel Number and Seed Production in Arabidopsis thaliana. Food and Energy Security 1(1), 61-69.
[32]Du, J., Yin, H., Zhang, S., Wei, Z., Zhao, B., Zhang, J., Gou, X., Lin, H., and Li, J.* (2012) Somatice Embryogenesis Receptor Kinases Control Root Development Mainly via Brassinosteroid-Independent Actions in Arabidopsis thaliana. Journal of Integrative Plant Biology 54(6), 388-399.
[31]Gou, X. and Li, J.* (2012) Activation tagging. Methods in Molecular Biology 876, 117-133.
[30]Gou, X., Yin, H., He, K., Du, J., Yi, J., Xu, S., Lin, H., Clouse, S.D., Li, J.* (2012) Genetic Evidence for an Indispensable Role of Somatic Embryogenesis Receptor Kinases in Brassinosteroid Signaling. PLoS Genetics 8(1): e1002452.
[29]Li, J.*, Du, J., He, K., and Gou, X. (2012) Cell Death Control by Receptor Kinases in Arabidopsis thaliana. In, F.E. Tax and B. Kemmerling (editors) RECEPTOR-LIKE KINASES IN PLANTS: From Development to Defense. Springer. Volume 13, pp79-91.
[28]Wei, Z-Y and Li, J.* (2011) Receptor kinases mediated brassinosteroid signal transduction in plants. Chinese Bulletin of Life Sciences. 23 (11), 1106-1113.
[27]An, J., Guo, Z., Gou, X., Li, J.* (2011) TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana. Plant Signaling & Behavior, 6: 1117-1118.
[26]Li, J.* (2010) Multi-tasking of somatic embryogenesis receptor-like protein kinases. Current Opinion in Plant Biolology ,13: 509-514.
[25]Guo, Z., Fujioka, S., Blancaflor, E.B., Miao, S., Gou, X., and Li, J.* (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22, 1161-1173.
[24]Yang, H., Gou, X., He, K., Xi, D., Du, J., Lin, H., Li, J.* (2010) Arabidopsis BAK1 and BKK1 confer reduced susceptibility to Turnip Crinkle Virus. European Journal of Plant Pathology, 127: 147-156.
[23]Gou, X., He, K., Yang, H., Yuan, T., Lin, H., Clouse, S.D., Li, J.* (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics 11(1):19
[22]Li, D., Wang, M., Xu Y.Y., Luo, W., Liu, Z.H., Li, J., Chong, K.* (2009) Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal 7(8): 791-806.
[21]Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D.* (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase pair impacts early events in brassinosteroid signaling. Developmental Cell 15, 220-235.
[20]He, K., Gou, X., Powell, R.A., Yang, H., Yuan, T, Guo, Z., and Li, J.* (2008) Receptor-like protein kinases, BAK1 and BKK1, regulate a light-dependent cell-death control pathway. Plant Signaling & Behavior 3 (10), 813-815.
[19]Clouse, S.D.*, Goshe, M.B., Huber, S.C. and Li, J. (2008) Functional Analysis and Phosphorylation Site Mapping of Leucine-Rich Repeat Receptor-Like Kinases. In, GK Agrawal and R Rakwal (eds) Plant Proteomics: Technologies, Strategies and Applications. John Wiley & Sons, pp 469-484.
[18]Heese, A., Hann, D.R., Gimenez-ibanex, S., Jones, A., He, K., Li, J., Schroeder, J.I., Peck, S.C., Rathjen, J.P.* (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104, 12217-12222.
[17]He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russell, S.D., Li, J.* (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell death pathways. Current Biology 17, 1109-1115.
[16]Yuan, T., Fujioka, S., Takatsuto, S., Matsumoto, S., Gou, X.,He, K., Russell, S.D., and Li, J.* (2007) BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. The Plant Journal 51 (2), 220–233.
[15]Li, J.* and Gou, X. (2007) Brassinosteroids. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd: Chichester http://www.els.net/ [DOI: 10.1002/9780470015902.a0020092]
[14]Wang, L., Xu, Y.Y., Li, J.*, Powell, R.A., Xu, Z.H., and Chong, K.* (2007) Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide. Journal of Plant Physiology 164(5), 655-664.
[13]Zhou, A. and Li, J.* (2005) Arabidopsis BRS1 is an active and secreted serine carboxypeptidase. Journal of Biological Chemistry 280 (42), 35554-35561.
[12]Xu, Y.Y., Wang, X.M., Li, J., Li, J.H., Wu, J.S., Walker, J.C., Xu, Z.H., Chong, K.* (2005) Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana. Plant Molecular Biology 57 (6), 773-784.
[11]Wang, X.F., Goshe, M. B., Soderblom, E., Phinney, B.S., Kuchar, J., Li, J., Asami, T., Yoshida, S., Huber, S. C., Clouse, S. D.* (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase. The Plant Cell 17(6), 1685-1703.
[10]Zhou, A., Wang, H., Walker, J.C., and Li, J.* (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. The Plant Journal 40, 399-409.
[9]Lee, G., Li, J., Walker, J.C. and Van Doren S.R.* (2003) 1H. 13C and 15N resonance assignments of the kinase interacting FHA domain of Arabidopsis thaliana kinase-associated protein phosphatase. Journal of Biomolecular NMR 25, 253-254.
[8]Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E. and Walker, J.C.* (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222.
[7]Lease, K.A., Wen, J., Li, J., Doke, J.T., Liscum, E. and Walker, J.C.* (2001) A mutant Arabidopsis Heterotrimeric G protein b subunit affects leaf, flower and fruit development. The Plant Cell 13, 2631-2641.
[6]Li, J., Lease, K.A., Tax, F.E. and Walker, J.C.* (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 5916-5921.
[5]Li, J., Lee, G., Van Doren, S.R. and Walker, J.C.* (2000) The FHA domain mediates phosphorylation-dependent protein-protein interactions. Journal of Cell Science 113, 4143-4149.
[4]Li, J., Smith, G.P. and Walker, J.C.* (1999) Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. Proc. Natl. Acad. Sci. USA 96, 7821-7826.
[3]Lin, Q., Li, J., Smith, R.D. and Walker, J.C.* (1998) Molecular cloning and chromosomal mapping of type one serine/threonine protein phosphatases in Arabidopsis thaliana. Plant Molecular Biology 37, 471-481.
[2]Li, J., Hegeman, C.E., Hanlon, W.R., Lacy, G.H., Denbow, D.M. and Grabau, E.A.* (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiology 114, 1103-1111.
[1]Li, J. and Grabau, E.A.* (1996) Comparison of somatic embryogenesis and embryo conversion in commercial soybean cultivars. Plant Cell, Tissue Organ Cult. 44, 87-89.
發表中文論文:
[11]郭飛梅, 呂銘輝, 黎家. 油菜素甾醇的穩態與信號轉導調控研究進展[J]. 植物生理學報, 2023, 59 (12): 2217-2240.
[10]黎家,李傳友.新中國成立70年來植物激素研究進展[J].中國科學:生命科學,2019,49(10):1227-1281.
[9]黎家.植物激素——植物學研究永恒的話題[J].生物技術通報,2018,34(07):5-6.
[8]高坤,常金科,黎家.植物根向水性反應研究進展[J].植物學報,2018,53(02):154-163.
[7]衛卓赟,黎家.SERKs,擬南芥中一組參與多條細胞信號傳導途徑的共受體[J].中國科學:生命科學,2017,47(08):789-797.
[6]黎家,侯歲穩.蘭州大學生命科學學院專輯簡介[J].中國科學:生命科學,2017,47(08):785-788.
[5]常金科,黎家.獨腳金內酯信號感知揭示配體-受體作用新機制[J].植物學報,2017,52(02):123-127.
[4]孫超,黎家.油菜素甾醇類激素的生物合成、代謝及信號轉導[J].植物生理學報,2017,53(03):291-307.
[3]衛卓赟,黎家.受體激酶介導的油菜素內酯信號轉導途徑[J].生命科學,2011,23(11):1106-1113.
[2]馬建忠,婁世慶,匡廷云,黎家,童哲,湯佩松.不同光質對黍子(Panicum miliaceum)葉綠體光系統發育及psbA基因轉錄物穩態含量的影響[J].遺傳學報,1997(05):464-470.
[1]曾福禮 ,楊成德 ,黎家 ,吳靖嘉 ,柳明珠. 強力土壤增墑改良劑(GS—84型)在農業上應用的探討[J]. 蘭州大學學報, 1985, (S1): 48-58+40-41.
發表會議論文:
[2]吳玉俊.黎家. 受體激酶BAK1是調節植物PTI和ETI的重要節點[C]. 中國作物學會、中國植物學會、中國植物生理與植物分子生物學學會、中國遺傳學會、中國細胞生物學學會.2018全國植物生物學大會論文集.中國作物學會、中國植物學會、中國植物生理與植物分子生物學學會、中國遺傳學會、中國細胞生物學學會:中國作物學會,2018:188.
[1]徐云遠.黎家. 內源WUSCHEL基因的超表達誘導成熟莖表面異位啟動花芽[C]. 中國植物學會.中國植物學會七十周年年會論文摘要匯編(1933—2003).中國植物學會:中國植物學會,2003:424.
1、蘭州大學第二屆研究生“十佳導學團隊”(2020);
2、甘肅省優秀專家(2015);
3、Virginia Tech農學與生命科學學院杰出校友獎(2013-2014年度);
4、蘭州大學“師德標兵”(2013);
5、國家特聘專家(2012);
6、科學中國人(2011年)年度人物獎;
7、甘肅省領軍人才(2010年,2014年,2018年);
8、教育部 "長江學者獎勵計劃"特聘教授 (2008年);
9、蘭州大學“萃英”特聘教授(2009);
10、Oklahoma 大學青年教師獎(2003)。
中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺(簡稱:中國科技創新人物云平臺)免責聲明:
1、中國科技創新人物云平臺是:“互聯網+科技創新人物”的大型云平臺,平臺主要發揮互聯網在生產要素配置中的優化和集成作用,將互聯網與科技創新人物的創新成果深度融合于經濟社會各領域之中,提升實體經濟的創新力和生產力,形成更廣泛的以互聯網為基礎設施和實現工具的經濟發展新形態,實現融合創新,為大眾創業,萬眾創新提供智力支持,為產業智能化提供支撐,加快形成經濟發展新動能,促進國民經濟提質增效升級。
2、中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺內容來源于互聯網,信息都是采用計算機手段與相關數據庫信息自動匹配提取數據生成,并不意味著贊同其觀點或證實其內容的真實性,如果發現信息存在錯誤或者偏差,歡迎隨時與我們聯系,以便進行更新完善。
3、如果您認為本詞條還有待完善,請編輯詞條。
4、如果發現中國科技創新人物云平臺提供的內容有誤或轉載稿涉及版權等問題,請及時向本站反饋,網站編輯部郵箱:kjcxac@126.com。
5、中國科技創新人物云平臺建設中盡最大努力保證數據的真實可靠,但由于一些信息難于確認不可避免產生錯誤。因此,平臺信息僅供參考,對于使用平臺信息而引起的任何爭議,平臺概不承擔任何責任。