2.2013年,指導碩士生傅丹娟和孫小玲構造了波浪越過帶沖刷槽矩形防波堤時修正緩坡方程的解析解,論文發表在美國土木工程師協會《Journal of Engineering Mechanics》139卷第1期39-58頁。結果表明,麻省理工學院教授Mei在其英文名著《The Applied Dynamics of Ocean Surface Waves》中有關長波被矩形潛堤反射的反射系數是波譜變量的周期函數的經典結論其實是不正確的,因為劉煥文等從數學上嚴格證明了該反射系數在全波譜范圍僅為波譜變量具有衰減性的周期振蕩函數,而非永不衰減的周期函數,這正好與水波的物理特性相吻合。劉煥文解釋說,Mei教授基于長波理論所給出的解其推導無懈可擊,但由于對線性波色散關系采用了長波近似,導致最后得出的結論在大范圍看是不對的,而且是衰減與否的定性錯誤。他舉例說,若局限于地球上一個小地方近似地看,地球給人以錯覺,好像真是平的,尤其當我們身處廣袤無垠的華北平原,但當我們跳出地球在更大范圍的太空回望,才仿然大悟它是圓的。
4.指導碩士生羅恒、曾惠丹和石云萍成功給出了幾類布拉格潛堤各項參數間的優化曲線,成果分別在《Journal of Waterway Port Coastal and Ocean Engineering》和《Journal of Hydrodynamics》上發表。工程師們只需根據擬建防波堤海域來波的主頻和擬建防波堤的個數和高度,通過查閱劉煥文他們建立的優化曲線,馬上就能知道怎樣設置各種形狀潛堤的最優寬度。
9.與林鵬智教授一起,花了一個禮拜,硬是用手算的方法,將8階行列式按行逐步展開,推導出長波越過梯形陷坑時的閉合形式解析解。該結果于2005年以商榷形式發表在《Coastal Engineering》52卷197-200頁,囊括了以往多位國外學者的相關經典結果為特例。兩位原作者Bender和Dean在《Coastal Engineering》2005年52卷上撰文給予正面回應:“劉和林的解析解具有如下價值:提供了驗證數值解基礎,能夠演示寬廣波場解,討論了直線斜坡組成的廣泛地形,建立了適當的無量綱變量”。而美國陸軍工程兵團專家Michalsen,俄勒岡州立大學Haller和韓國首爾國立大學教授Suh在《Journal of Waterway Port Coastal and Ocean Engineering》2008年134卷1-11頁發表的合作論文中將該結果以劉煥文和林鵬智的姓命名為劉-林解(LL solution)和劉-林模型(LL model),并在同一篇論文中引用達12次之多。
[3]Guo, Fu-Cheng; Liu, Huan-Wen*; Pan, Jun-Jie.Phase downshift or upshift of Bragg resonance for water wave reflection by an array of cycloidal bars or trenches.Wave Motion, 2021, 106: 102794.
[4]Huan-WenLiu(劉煥文)*; Hui-DanZeng(曾慧丹); Hui-DongHuang(黃慧冬).Bragg resonant reflection of surface waves from deep water to shallow water by a finite array of trapezoidal bars.Applied Ocean Research, 2020, 94: 101976.
[5]Liu, Huan Wen*; Liu, Yue; Lin, Pengzhi.Bloch band gap of shallow-water waves over infinite arrays of parabolic bars and rectified cosinoidal bars and Bragg resonance over finite arrays of bars.Ocean Engineering, 2019, 188: 106235.
[6]Huan-WenLiu(劉煥文); Xiao-FengLi(李小鳳); PengzhiLin(林鵬智)*.Analytical study of Bragg resonance by singly periodic sinusoidal ripples based on the modified mild-slope equation.Coastal Engineering, 2019, 150: 121-134.
[8]Huan-WenLiu(劉煥文)*; Qun-BinChen(陳群斌); Jian-JianXie(謝健。.Analytical benchmark for linear wave scattering by a submerged circular shoal in the water from shallow to deep.Ocean Engineering, 2017, 146: 29-45.
[9]Huan-WenLiu(劉煥文)*.Band gaps for Bloch waves over an infinite array of trapezoidal bars and triangular bars in shallow water.Ocean Engineering, 2017, 130: 72-82.
[14]Guo-JiTang(唐國吉)*; Huan-WenLiu(劉煥文); Xing Wang.A projection-type method for variational inequalities on Hadamard
manifolds and verification of solution existence.Optimization, 2015, 64(5): 1081-1096.
[15]Huan-WenLiu(劉煥文)*; HengLuo(羅恒); Hui-DanZeng(曾慧丹).Optimal collocation of three kinds of Bragg breakwaters for Bragg resonant reflection by long waves.Journal of Waterway Port Coastal and Ocean Engineering-ASCE, 2015, 141(3): 1-17.
[16]Huan-WenLiu(劉煥文)*; Yun-PingShi(石云萍); Dun-QianCao(曹敦虔).Optimization to parabolic bars for maximum Bragg resonant reflection of long waves.Journal of Hydrodynamics, 2015, 27(3): 373-382.
[18]BoLiao(廖波); Dun-QianCao(曹敦虔); Huan-WenLiu(劉煥文)*.Wave transformation by a dredge excavation pit for waves from shallow water to deep water.Ocean Engineering, 2014, 76: 136-143.
[19]Huan-WenLiu(劉煥文)*; Xiao-MeiZhou(周小妹).Explicit modified mild-slope equation for wave scattering by piecewise monotonic and piecewise smooth bathymetries.Journal of Engineering Mathematics, 2014, 87: 29-45.
[20]Huan-WenLiu(劉煥文)*; Xiao-LingSun(孫小玲).An analytical solution for long-wave scattering by a submerged cylinder in an axi-symmetrical pit.Journal of Marine Science and Technology, 2014, 22(5): 542-549.
[21]Huan-Wen Liu*, Qiu-Yue Wang, Guoji Tang.Exact solution to the modified mild-slope equation for wave scattering by a cylinder with an idealized scour pit.Journal of Waterway, Port, Coast. and Ocean Engineering-ASCE (航道、港口、近海與海洋工程雜志)(2013)139.5.413-423.SCI, EI收錄
[22]Huan-Wen Liu*, Jian-Jian Xie.The series solution to the modified mild-slope equation for wave scattering by Homma islands.Wave Motion (波浪運動)(2013)50.4.869-884.SCI, EI收錄
[23]Huan-Wen Liu*, Xiao-Mei Zhou.Explicit modified mild-slope equation for wave scattering by piecewise monotonic and piecewise smooth bathymetries.Journal of Engineering Mathematics (工程數學雜志)(2013)82.DOI: 10.1007/s10665-013-9661-6
[24]Huan-Wen Liu*, Jiong-Xing Luo.An analytical solution for linear long wave reflection by two submerged rectangular breakwaters.Journal of Marine Science and Technology (海洋科學與技術雜志),2013, 21(2): 142-148.SCI, EI收錄
[25]Jian-Jian Xie, Huan-Wen Liu*.Analytical study for linear wave transformation by a trapezoidal breakwater or channel.Ocean Engineering (海洋工程), 2013, 64: 49-59.SCI, EI收錄
[26]Huan-WenLiu(劉煥文)*; Dan-JuanFu(傅丹娟); Xiao-LingSun(孫小玲).Analytic solution to the modified mild-slope equation for reflection by a rectangular breakwater with scour trenches.Journal of Engineering Mechanics-ASCE, 2013, 139: 39-58.
[27]Huan-WenLiu(劉煥文)*; Jiong-XingLuo(羅炯興); PengzhiLin(林鵬智); RuiLiu(劉銳).An analytical solution for long-wave reflection by a general breakwater or trench with curvilinear slopes.Journal of Engineering Mechanics-ASCE, 2013, 139: 229-245.
[28]Liu, Li-Bin*; Liu, Huan-Wen。Compact difference schemes for solving telegraphic equations with Neumann boundary conditions。Applied Mathematics and Computation, 2013, 219(19): 10112-10121.
[29]Xi-Yuan Zhai; Huan-WenLiu(劉煥文)*; Jian-Jian Xie。Analytic study to wave scattering by a general Homma island using an explicit form of the modified mild-slope equation。Applied Ocean Research, 2013, 43: 175-183.
[34]Huan-WenLiu(劉煥文)*; Jian-JianXie(謝健。; Zhang-HuaLuo(羅掌華).An analytical solution for long-wave scattering by a circular island mounted on a general shoal.Journal of Waterway Port Coastal and Ocean Engineering-ASCE, 2012, 138: 425-434..SCI:064AK, EI收錄http://ascelibrary.org/wwo/resource/3/jwpexx/102?isAuthorized=no
[35]Jian-JianXie(謝健健); Huan-WenLiu(劉煥文)*.An exact analytic solution to the modified mild-slope equation for waves propagating over a trench with various shapes.Ocean Engineering, 2012, 50: 72-82..SCI:978TT, EI收錄.http://www.sciencedirect.com/science/article/pii/S0029801812001758
[36]Huan-WenLiu(劉煥文)*; JingYang(楊靜); PengzhiLin(林鵬智).An analytic solution to the modified mild-slope equation for wave propagation over one-dimensional piecewise smooth topographies.Wave Motion, 2012, 49: 445-460.
[37]Chen, Sun-Kang*; Liu, Huan-Wen; Cui, Xiang-Zhao.Local Hermite Interpolation by Bivariate C-1 Cubic Splines on Checkerboard Triangulations.Journal of Computational Analysis and Applications, 2012, 14(3): 559-568.
[38]Jian-Jian Xie, Huan-Wen Liu*, Pengzhi Lin.Analytical solution for long wave reflection by a rectangular obstacle with two scour trenches.Journal of Engineering Mechanics - ASCE(工程力學雜志)(2011)137.12.919-930.SCI:876VE, EI收錄http://ascelibrary.org/emo/resource/1/jenmdt/v137/i12/p919_s1?isAuthorized=no
[39]Li-Bin Liu*,Huan-Wen Liu.A new fourth-order difference scheme for solving an N-carrier system.International Journal of Computer Mathematics (計算機數學國際雜志)(2011)88.3553-3564
[40]Li-Bin Liu,Huan-Wen Liu*, Yanping Chen.Polynomial spline approach for solving second-order boundary-value problems with Neumann conditions.Applied Mathematics and Computation (應用數學與計算), 2011, 217(16): 6872-6882. SCI收錄
[41]Huan-Wen Liu*, Jian-Jian Xie.Discussion of ``Analytic solution of long wave propagation over a submerged hump" by Niu and Yu (2011).Coastal Engineering (近海工程)(2011)58.9.948-952 SCI:801ZX, EI收錄http://www.sciencedirect.com/science/article/pii/S0378383911000652
[44]Sunkang Chen, Huan-Wen Liu.An improvement to a C2 quintic spline interpolation scheme on triangulations.Journal of Computational Analysis and Applications(計算分析與應用雜志)(2010)12.4.760-767.SCI收錄
[45]Sunkang Chen, Huan-Wen Liu.Lagrange Interpolations by Bivariate C1 Cubic Splines on Powell-Sabin's Triangulations.Journal of Computational Analysis and Applications(計算分析與應用雜志)(2010)12.1.163-171.SCI收錄
[46]Li-Bin Liu,Huan-Wen Liu.Quartic spline methods for solving one-dimensional telegraphic equations.Applied Mathematics and Computation(應用數學與計算)(2010)216.951-958.SCI收錄
[47]Huan-Wen Liu*, Na Yi.Dimensions of bivariate C1 cubic spline spaces over unconstricted triangulations with valence six.Journal of Applied Functional Analysis (應用泛函分析雜志)(2010)5.4.357-369
[48]Sun-Kang Chen,Huan-Wen Liu.Lagrange Interpolations by Bivariate C^1 Cubic Splines on Powell-Sabin’s Triangulations.Journal of Computational Analysis and Applications(計算分析與應用雜志)(2010)12.163-171.SCI收錄
[52]Song-Ping Zhu, Huan-Wen Liu,T.R. Marchant.A perturbation DRBEM model for weakly nonlinear wave run-ups around islandsEngineering Analysis with Boundary Elements (工程分析邊界元)(2009)33.1.63-76.SCI: 388JO; EI:084711731977
[53]Huan-Wen Liu, Li-Bin Liu.A semi-discretization method based on quartic splines for solving one-space-dimensional hyperbolic equationsApplied Mathematics and Computation(應用數學與計算)(2009)210.2.508-514.SCI: 425LD; EI:20091412003207
[54]Huan-Wen Liu,Le-Le Fan.Lagrange interpolations using bivariate C1 quinticsupersplines on doubleClough–Tocher refinements.Computers and Mathematics with Applications (計算機與數學應用)(2009)58.1636-1644 SCI:504QA
[55]Huan-Wen Liu, Li-Bin Liu.An Unconditionally Stable Spline Difference Scheme of O(k^2+h^4) for Solving the Second Order 1D Linear Hyperbolic Equation.Mathematical and Computer Modelling(數學與計算機模擬)(2009)49.1985-1993.SCI: 429MR; EI:20091512021066
[56]Na Yi, Huan-Wen Liu.A Discussion to Dimensions of Spline Spaces Over Unconstricted Triangulations.International Journal of CAD/CAM(計算機輔助設計國際雜志)(2009)9.1.25-29
[57]Yanping Chen, Yao Fu, Huan-Wen Liu.Recovery a posteriori error estimates for general convex elliptic optimal control problems subject to pointwise control constraints.Journal of Computational Mathematics(計算數學雜志)(2009) 27.4.543-560.SCI收錄
[60]Sun-Kang Chen,Huan-Wen Liu*.A bivaraite C^1 cubic super spline space on Powell-Sabin triangulationComputers and Mathematics with Applications (計算機與數學應用)(2008)56.1395-1401.SCI: 336FP; EI:082811370249
[67]Peng-Zhi Lin, Huan-Wen Liu.Scattering and trapping of wave energy by a submerged truncated paraboloidal shoalJournal of Waterway, Port, Coast. and Ocean Engineering - ASCE (航道、港口、近海與海洋工程雜志)(2007)133.94-103.SCI: 138SE; EI:07091045178,http://ascelibrary.org/wwo/resource/1/jwped5/v133/i2/p94_s1?isAuthorized=no
[68]Yan-Ping Chen, Huan-Wen Liu, Shang Liu.Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methodsInternational Journal for Numerical Methods in Engineering(工程數值方法國際雜志)(2007)69.408-422.SCI: 125XD; EI:07031036326
[69]Huan-Wen Liu, Sun-Kang Chen, Yan-Ping Chen.Bivariate C1 cubic spline space over Powell-Sabin's type-1 refinementJournal of Information and Computational Science (信息與計算科學雜志)(2007)4.151-160.EI: 073310766422
[70]Huan-Wen Liu, Yan-Bao Li.An analytical solution for long-wave scattering by a submerged circular truncated shoalJournal of Engineering Mathematics(工程數學雜志)(2007)57.133-144.SCI: 130TJ; EI:07061041349
[71]Huan-Wen Liu, Peng-Zhi Lin.An analytic solution for wave scattering by a circular cylinder mounted on a conical shoalCoastal Engineering Journal (近海工程雜志)(2007)49.4.393-416 SCI:257LK.EI:074310883365
[72]Huan-Wen Liu,Yong-Xiang Mo,Dun-Qian Cao.Double periodic cubic spline spaces over non-uniform type-2 triangulationsJournal of Mathematical Research & Exposition(2005)25.465-473
[73]Peng-Zhi Lin, Huan-Wen Liu.Analytical study of linear long-wave reflection by a two-dimensional obstacle of general trapezoidal shapeJournal of Engineering Mechanics - ASCE(工程力學雜志)(2005)131.822-830.SCI: 948IB; EI:05409396288,http://ascelibrary.org/emo/resource/1/jenmdt/v131/i8/p822_s1?isAuthorized=no
[74]Huan-Wen Liu, Peng-Zhi Lin.Discussion of “Wave transformation by two-dimensional bathymetric anomalies with sloped transitions”[Coast. Eng. 50 (2003) 61-84]Coastal Engineering (近海工程)(2005)52.197-200.SCI: 899TB; EI: 05068827402,http://www.sciencedirect.com/science/article/pii/S0378383904001498
[75]Huan-Wen Liu, Don Hong, Dun-Qian Cao.Bivariate cubic spline space over a non-uniform type-2 triangulation and its subspaces with boundary conditionsComputers and Mathematics with Applications (計算機與數學應用)(2005) 49.1853-1865.SCI: 952DW; EI:05459464117
[76]Huan-Wen Liu,Peng-Zhi Lin,N.J.Shankar.An analytical solution of the mild-slope equation for waves around a circular island on a paraboloidal shoalCoastal Engineering (近海工程)(2004)51.421-437.SCI: 854KU; EI: 05048805378,http://www.sciencedirect.com/science/article/pii/S0378383904000559
[77]Huan-Wen Liu,Don Hong.An explicit local basis for cubic spline space over triangulated quadrangulation.Journal of Computational and Applied Mathematics (計算數學與應用數學雜志)(2003)155.187-200.SCI: 684KW; EI: 03257509800; ISTP: 684KW
[78]Huan-Wen Liu,Song-Ping Zhu.The Dual reciprocity boundary element method for magnetohydrodynamic channel flowsANZIAM Journal (澳大利亞與新西蘭工業與應用數學雜志)(2002)44.305-322.SCI: 609NA,http://journals.cambridge.org/download.php?file=%2FANZ%2FANZ44_02%2FS1446181100013961a.pdf&code=74176868a2ce7feca52396b9fb4b0cce
[79]Huan-Wen Liu, Don Hong.Bivariate cubic spline space over even stratified triangulations.Journal of Computational Analysis and Applications (計算分析與應用)(2002)4.19-36.SCI: 514HW
榮譽獎勵:
1.2002年,入選教育部優秀青年教師資助計劃人選。
2. 2002年,入選廣西“十百千人才工程”第二層次人選。
3. 2004年,獲評教育部“全國優秀教師”。
4. 2005年,獲“廣西壯族自治區先進工作者”稱號。
5. 2006年,獲中華全國總工會“全國五一勞動獎章”。
6. 2006年,獲中央統戰部“各民主黨派、工商聯、無黨派人士全面建設小康社會作貢獻先進個人”。
7. 2006年,獲“廣西留學回國人員先進個人”稱號。
8. 2010年,獲廣西自然科學獎二等獎。
9. 2013年,被評為“廣西壯族自治區優秀專家”。
劉煥文:喜歡思考的人生一直在路上
2019-01-08
人物簡介:湖南瀏陽人,現任教于浙江海洋大學船舶與機電工程學院,二級教授。1982年大專畢業于湘潭師專數學系。1982-1985年在湖南瀏陽九中任高中數學教員。1985-1988年在湘潭大學計算數學專業攻讀碩士學位。1988-2016年在廣西民族大學歷任講師、副教授、教授。期間,1997-2000年在澳大利亞臥龍崗大學(University of Wollongong)數學專業攻讀博士學位。2002-2004年任新加坡國立大學土木系研究學者(Research Fellow)。2004年獲教育部“全國優秀教師”。2006年獲中華全國總工會“全國五一勞動獎章”。2013年獲“廣西自治區優秀專家”稱號。2015年被聘為浙江省高校“錢江學者”特聘教授。目前擔任國際SCI期刊《Journal of Hydrodynamics》,國內核心期刊《應用數學和力學》及《水動力學研究與進展》編委。
在臥龍崗大學訪學及攻讀博士學位的四年多時間,雖然所從事的是水波問題的邊界元數值模擬,但他同時也了解到國際上一個長時間沒有解決的有關緩坡方程(Mild-slope equation)的解析模擬問題。緩坡方程由瑞典學者Berkhoff于1972 年建立以來,成為能夠模擬從深水波到有限水深水波再到淺水波,并同時包含折射與衍射雙重效應的強大工具。但有關該方程的解析解一直沒有找到。當時的國際水波界普遍認為,緩坡類方程的解析解應該沒法找到,原因在于該方程的系數所涉及的波數k是由隱式的色散關系所定義,說得更具體一點就是,緩坡方程這個微分方程的系數不是簡單的常數,也不止是空間自變量的函數,而是空間自變量的隱函數!一般的偏微分方程和常微分方程的教材都不會討論這樣復雜的情形。美國國家工程科學院院士、麻省理工學院講席教授Mei 1984年曾在他的中文專著中明確指出“求緩坡方程解析解很困難”。另兩位美國國家工程科學院院士、佛羅里達大學講席教授Dean和約翰霍普金斯大學講席教授Dalrymple 1984在他們的合作名著中指出“Analytical solutions to the model equations are few”(該模型方程的解析解幾乎沒有)。還有臥龍崗大學資深教授諸頌平及韓國和臺灣的幾位國際同行,也在水波領域多個國際專業期刊上斷言“對緩坡方程解析求解幾乎不可能,數值解只能是唯一選擇!”從此該問題在劉煥文心中留下了深刻印象,為他日后圓滿解決這一問題播下了種子。
新加坡國立大學合作研究:劉-林模型被國外同行冠名
2000年底自澳大利亞博士畢業回國后,恰逢國內始于1999年的高校擴招,全國高校師資緊張,但劉煥文婉拒了上海、南京和長沙幾所高校的邀請,仍然回到了原單位廣西民族大學任教。他對記者說,雖然在國外讀博拿的是澳洲的全額獎學金,但他最初是廣西公派出國的,感覺不回廣西工作良心不安。回國后,他于2002年2月至2004年1月前往新加坡國立大學土木學院,以研究學者的身份參與新加坡國立大學、美國康奈爾大學和新加坡國家氣象署有關海嘯的合作研究項目,從此開啟了與華裔學者林鵬智教授此后的長期合作研究。2004年他倆與印度裔學者Shankar教授一起,借用英國學者Hunt 于1976年給出的對隱式線性水波色散關系的一個顯式逼近,構造了緩坡方程的泰勒級數形式的逼近解析解。論文發表在國際海岸與近海工程領域的頂級雜志《Coastal Engineering》。這是自1950年美國學者Eckart建立類似緩坡方程半個多世紀以來國際水波界第一次構造出緩坡方程的近似解析解,為以后構造出緩坡方程的準確解析解,了解水波在非平整海底地形上的傳播機理奠定了基礎。2005年,他與林鵬智教授合作構造的有關廣義梯形潛堤對淺水波反射的封閉解發表在美國土木工程師協會雜志《Journal of Engineering Mechanics》。2007年,他們利用緩坡方程近似解析解模擬水下截頂淺灘對波能誘捕(Wave energy trapping)的合作論文發表在美國土木工程師協會另一雜志《Journal of Waterway, Port, Coastal and Ocean Engineering》。特別值得一提的是,劉煥文在2003年瀏覽最新發表的學術論文時,讀到美國國家工程科學院院士Dean與合作者當年發表在《Coastal Engineering》的一篇論文,該文建立了長波在廣義梯形凹槽上傳播時反射系數的數值解。經過仔細研讀,他和林鵬智教授發現只要再進一步解析求解一個8階的代數方程組,就可以直接給出計算反射系數的準確公式,從而將Dean和合作者的數值解提升為簡潔的解析解。他和林鵬智教授將此結果發表在《Coastal Engineering》上。由于采用的是與原作者商榷討論的形式,因此美國工程院院士Dean與合作者在該雜志上給予了公開答復,對該解析公式給予了正面評價“劉-林解具如下價值:提供了驗證數值解基礎,能夠演示寬廣波場解,討論了直線斜坡組成的廣泛地形,建立了適當的無量綱變量”。2007年,該封閉形式的解析解被美國陸軍工程師兵團和韓國首爾國立大學等的學者在美國土木工程師協會雜志《Journal of Waterway, Port, Coastal and Ocean Engineering》上命名為劉-林解和劉-林模型。